If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+953x+14472=33276
We move all terms to the left:
2x^2+953x+14472-(33276)=0
We add all the numbers together, and all the variables
2x^2+953x-18804=0
a = 2; b = 953; c = -18804;
Δ = b2-4ac
Δ = 9532-4·2·(-18804)
Δ = 1058641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(953)-\sqrt{1058641}}{2*2}=\frac{-953-\sqrt{1058641}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(953)+\sqrt{1058641}}{2*2}=\frac{-953+\sqrt{1058641}}{4} $
| x—10=36 | | 75/125×5=x | | 3x-2/x+5=8/4 | | 12+k-7=1 | | 12+k-7=11 | | 6X×=2Y×z | | 10x+25=6x-25 | | 1.84=6t-4.9t^{2} | | W²+4w=0 | | 2=14=3a | | Z4-1=i | | 4x-x+5=2x+10,x | | 5a+7=-5–a | | 1500/10=x | | p=1500/10+100 | | 5u+41=6 | | -81=-7u-18 | | u+1.63=3.37 | | 2^(2x)-5(2^(x))+4=0 | | 15−2x=−1 | | 13-24p=61 | | 4p+24=96 | | 38-w=232 | | 122=262-v | | 118=-y+195 | | -u+181=290 | | (3*n)+10=34 | | 82=162-x | | (3*n)*10=34 | | x+x+x/2+x/4=3=297 | | 10=y+209 | | x+0.18x=41680 |